na jedną oś - nie może być zbyt duży ★★★ OSADKA: oś kwiatostanu, na której osadzone są kwiaty ★★★★★ mariola1958: OSTREK: oś, na której obraca się igła magnetyczna busoli ★★★★★ mariola1958: PIASTA: część koła, w którą mocuje się oś ★★★ RZĘDNA: oś w parze z odciętą ★★★ CZEKAŁO

Magnetyzm jest znany ludziom od czasów starożytnych. Pierwsza pisemna wzmianka o nim pochodzi z I wieku pne. e., ale naukowcy uważają, że wiedza na temat tego zjawiska pojawiła się znacznie wcześniej. Jest globalna, a życie bez niej na naszej planecie jest niemożliwe. Dlatego badacze przez cały czas próbowali badać tę siłę i ograniczać ją dla postępu ludzkości. Pole magnetyczne Żyjąc na Ziemi, nie zauważając tego, jesteśmy stale pod wpływem różnych sił. Pole magnetyczne nie jest wyjątkiem od tej reguły. Chociaż, dokładniej, definiuje się go jako szczególny rodzaj materii, a nie na siłę. Źródłem jego występowania są naładowane cząstki elektryczne lub magnesy. Jeśli przyjmiemy przestrzenną charakterystykę tej materii, wówczas jest to kombinacja sił zdolnych do działania na namagnesowane ciała. Ta zdolność wynika z ruchu wyładowań między cząsteczkami obiektu. Głównym warunkiem powstania takiego pola jest ciągły ruch. ładunki elektryczne. Interakcja pól magnetycznych i elektrycznych doprowadziła do tego, że nie mogą istnieć oddzielnie. Zjawisko to nazywa się polem elektromagnetycznym. Wszystkie elementy takiej materii są ze sobą nierozerwalnie połączone i działają tak, że zmieniają się ich właściwości. Właściwości magnetyczne Pole magnetyczne, podobnie jak każde inne zjawisko fizyczne na Ziemi, ma swoją własną charakterystykę: Pochodzenie to przenoszenie ładunków elektrycznych. Indukcja pola magnetycznego jest jego główną charakterystyką siły, która istnieje w każdym z jej poszczególnych punktów i jest kierunkowa. Jego wpływ ogranicza się do magnesów, ruchomych ładunków i prądów. Jest podzielony przez naukowców na dwa rodzaje: stały i zmienny. Osoba bez specjalnych urządzeń nie wyczuwa wpływu magnetyzmu. Jest to zjawisko elektrodynamiczne, ponieważ źródłem jego pochodzenia są poruszające się cząstki. prąd elektryczny. I tylko te same cząstki mogą być dotknięte przez pole magnetyczne. Trajektoria ruchu naładowanych cząstek może być prostopadła. Indukcja w magnetyzmie Indukcja pola magnetycznego jest określona przez jego kierunkowość, to znaczy jest ona wektorem i jest nieodłącznym elementem każdej dziedziny występującej w takich warunkach. Jest zawsze skierowany w taki sam sposób, jak strzałka, która swobodnie się obraca w kompasie. Tego rodzaju pole całkowicie charakteryzuje się indukcją magnetyczną. Każdy punkt jest nośnikiem kierunku i modułu tej siły. Jeśli są one takie same dla wszystkich punktów tego pola, to nazywa się je jednorodne. Indukcja pola magnetycznego w fizyce jest oznaczona przez wektor i wielką literę alfabetu łacińskiego B. Formuła indukcji magnetycznej Aby obliczyć tę charakterystykę mocy, musisz znać wzór do jej obliczenia: B = F: I x l. W tym wzorze: B oznacza indukcję pola magnetycznego; F jest siłą działającą na przewodnik od strony pola; I - siła, z jaką prąd przechodzi przez przewodnik; l jest faktyczną długością samego przewodnika. Jednostką indukcji, według Międzynarodowego Systemu Jednostek, jest Tesla (T). Linie przechodzące w polu magnetycznym Indukcja magnetyczna ma wektor, czyli kierunkowość. Jeśli jest wyświetlany na papierze, zostanie wyrażony w liniach. Zbiegają się one ze stycznymi, które mają ten sam kierunek, co wektor indukcyjny. Jeżeli pole magnetyczne jest jednorodne, wówczas te linie biegną równolegle do siebie. Gdy nie jest jednorodna, kierunek tej siły będzie różny we wszystkich punktach pola, a styczne do nich będą wyglądać jak koła. Magnetyzm magnetyczny Pole magnetyczne może być tworzone przez różne obiekty, na przykład solenoid. Solenoid w swej istocie jest elektromagnesem, czyli cewką indukcyjną. Aby utworzyć solenoid, wymagana jest cylindryczna powierzchnia (rdzeń) i izolowany żyły przewodnik (drut), który jest nawinięty na rdzeń. Prąd płynący przez drut tworzy tego rodzaju materię wokół solenoidu. W tym momencie zamienia się w magnes. Jeśli wyłączysz elektryczność, wszystkie specjalne właściwości solenoidu znikną, a po ponownym włączeniu zostaną wznowione. Im więcej powinieneś owijać wokół rdzenia i im więcej prądu jest dostarczane, tym silniejsza będzie atrakcyjność solenoidu. Magnetyczny cewka indukcyjna Bardzo interesujące jest uwzględnienie solenoidu, którego długość jest znacznie większa niż jego średnica. Indukcja pola magnetycznego solenoidu w tym przypadku wszędzie ma jedną kierunkowość, która jest równoległa do rdzenia cewki, co oznacza, że ​​każda linia pola jest równoległa do siebie. Jeżeli przewodnik jest równomiernie nawinięty, to nie tylko kierunek jest taki sam, wartość liczbowa będzie również taka sama. Ze względu na to, że solenoid ma bardzo prostą konstrukcję, jego pole zostało uznane za standard polowy. Magnetosfera ziemska Na naszej planecie są miliony magnesów różnej wielkości i pochodzenia, ale największą z nich, do której ciągle się dotykamy, jest nasza Ziemia. Pierwszy raz o Ziemi jako o podobnym temacie powiedziano w 1600 roku. W tym roku naznaczono pojawienie się książki angielskiego fizyka Williama Hilberta, w której ściśle łączy on Ziemię i tę sprawę. Ponadto mówi on, że oś ziemskiego pola magnetycznego i oś, wzdłuż której obraca się planeta, nie są identyczne, ale przeciwnie, mają tylko jeden punkt kontaktu. Jeśli stworzysz graficzny rysunek tego zjawiska wokół naszej niebieskiej kuli, natychmiast stanie się oczywiste, że jest bardzo podobny do zwykłego magnes trwały. Pierwsze mapy pokazujące naszą planetę z tego kierunku zostały narysowane przez E. Halleya w 1702 roku. Jak ziemia regeneruje swoje szczególne właściwości? To całkiem proste. Jak wiadomo, istnieje rdzeń w głębi naszej planety. Jest to ogromna kula rozgrzanego do czerwoności żelaza, która jest doskonałym przewodnikiem prądu, czyli naładowanym rdzeniem i zapewnia potężne przepływy cząstek. Z powodu tego zjawiska Ziemia jest otoczona przez magnetosferę, która chroni ją przed negatywnymi wpływami z głębi kosmosu, a nawet z naszego własnego Słońca. Indukcja pola magnetycznego Ziemi wynosi 0,5 · 10 - 4 T. Zmiany w magnetosferze Ziemi Po odkryciu ziemskiego pola magnetycznego wielu fizyków zdecydowało się rozwiązać ten problem. W 1635 r. G. Hellibrand odkrył, że ta warstwa globu ulega ciągłym zmianom. Zmiany te są podzielone na dwa rodzaje: stały i krótkoterminowy. Trwałe występowanie z powodu złóż minerałów rudy, które powodują odkształcenia spowodowane własnymi silnymi przepływami energii. Winowajcą krótkoterminowych zmian jest tak zwany "wiatr słoneczny". Jest to strumień cząstek elektrycznych, które wybuchają z powierzchni Słońca. Interakcja tych dwóch zjawisk prowadzi do "burz magnetycznych". Jeśli taka burza jest silna, może nawet doprowadzić do utraty łączności radiowej lub niepewności igły kompasu. Jednym z najpiękniejszych efektów takich burz jest Northern Lights, ponieważ bieguny są szczególnie podatne na ich wpływ. Tak więc magnetyzm jest obecny w życiu każdego człowieka. Wpływa na nas, nawet jeśli nie czujemy tego. Z powodu tego zjawiska nasza planeta nie jest narażona na negatywne wpływy z zewnątrz, a my mamy okazję obserwować barwne kolory Aurory.

Kwestia nazewnictwa biegunów. Termin „biegun magnetyczny” oznacza najczęściej miejsce, w którym inklinacja magnetyczna osiąga 90°, tj. swobodnie zawieszona igła kompasu znalazłaby się w pozycji dokładnie pionowej (dla kompasu ustawionego pionowo, tj. oś igły jest ustawiona poziomo, a igła obraca się w płaszczyźnie pionowej).
GluEEE Użytkownik Posty: 924 Rejestracja: 30 gru 2012, o 19:24 Płeć: Mężczyzna Lokalizacja: Całkonacja Podziękował: 227 razy Pomógł: 14 razy Igła magnetyczna i przewodnik z prądem. Jak zachowają się igły magnetyczne, które znajdują się obok przewodnika na tym samym poziomie. Jedna z prawej, jedna z lewej strony? Kartezjusz Użytkownik Posty: 7318 Rejestracja: 14 lut 2008, o 08:31 Płeć: Mężczyzna Lokalizacja: Z Bielskia-Białej Podziękował: 5 razy Pomógł: 955 razy Igła magnetyczna i przewodnik z prądem. Post autor: Kartezjusz » 25 wrz 2013, o 14:31 Zależy od kierunku przepływu prądu. GluEEE Użytkownik Posty: 924 Rejestracja: 30 gru 2012, o 19:24 Płeć: Mężczyzna Lokalizacja: Całkonacja Podziękował: 227 razy Pomógł: 14 razy Igła magnetyczna i przewodnik z prądem. Post autor: GluEEE » 25 wrz 2013, o 14:36 Przewodnik poziomy, prąd płynie do przodu (za kartę). Odchylą się biegunem północnym w stronę przewodu, ale ta z lewej przechyli się troszkę do góry, a ta z prawej troszkę do dołu? Kartezjusz Użytkownik Posty: 7318 Rejestracja: 14 lut 2008, o 08:31 Płeć: Mężczyzna Lokalizacja: Z Bielskia-Białej Podziękował: 5 razy Pomógł: 955 razy Igła magnetyczna i przewodnik z prądem. Post autor: Kartezjusz » 25 wrz 2013, o 14:43 Nie tez lewej będzie skierowany w stronę przewodu, a drugi wręcz przeciwnie,bo ma przy sobie biegun południowy. GluEEE Użytkownik Posty: 924 Rejestracja: 30 gru 2012, o 19:24 Płeć: Mężczyzna Lokalizacja: Całkonacja Podziękował: 227 razy Pomógł: 14 razy Igła magnetyczna i przewodnik z prądem. Post autor: GluEEE » 25 wrz 2013, o 14:48 Czyli ten z lewej będzie obrócony biegunem południowym w kierunku przewodu, a ten z prawej obrócony biegunem północnym? GluEEE Użytkownik Posty: 924 Rejestracja: 30 gru 2012, o 19:24 Płeć: Mężczyzna Lokalizacja: Całkonacja Podziękował: 227 razy Pomógł: 14 razy Igła magnetyczna i przewodnik z prądem. Post autor: GluEEE » 25 wrz 2013, o 15:02 A jakbym chciał to wytłumaczyć, to dlatego, że w ten biegun południowy z lewej strony będzie wbijać się pole magnetyczne, a z tego z prawej będzie wychodzić, tak? Kartezjusz Użytkownik Posty: 7318 Rejestracja: 14 lut 2008, o 08:31 Płeć: Mężczyzna Lokalizacja: Z Bielskia-Białej Podziękował: 5 razy Pomógł: 955 razy Igła magnetyczna i przewodnik z prądem. Post autor: Kartezjusz » 25 wrz 2013, o 15:04 Igła magnetyczna zawsze patrzy na północ. ,a jest do tyłem jest do południa.. GluEEE Użytkownik Posty: 924 Rejestracja: 30 gru 2012, o 19:24 Płeć: Mężczyzna Lokalizacja: Całkonacja Podziękował: 227 razy Pomógł: 14 razy Igła magnetyczna i przewodnik z prądem. Post autor: GluEEE » 25 wrz 2013, o 15:06 Więc można przyjąć, że po lewej stronie takiego przewodu jest N, a po prawej S,tak? GluEEE Użytkownik Posty: 924 Rejestracja: 30 gru 2012, o 19:24 Płeć: Mężczyzna Lokalizacja: Całkonacja Podziękował: 227 razy Pomógł: 14 razy Igła magnetyczna i przewodnik z prądem. Post autor: GluEEE » 25 wrz 2013, o 15:33 Okej, ale czy ona nie mówi o tym, że linie pola są okręgami? Czy można "przyjąć", że w tamtych miejscach odpowiednio wychodzi i wchodzi pole .. Kamaz Użytkownik Posty: 127 Rejestracja: 13 kwie 2013, o 13:44 Płeć: Kobieta Pomógł: 21 razy Igła magnetyczna i przewodnik z prądem. Post autor: Kamaz » 25 wrz 2013, o 16:50 Tak, linie pola wytwarzanego przez przewodnik z prądem są okręgami. Przyjęcie, że z jednej strony linie pola wchodzą w przewodnik, a z drugiej wychodzą, przeczyłoby zdroworozsądkowej symetrii. Linie pola nie powinny zależeć od tego, z której strony na nie patrzymy. GluEEE Użytkownik Posty: 924 Rejestracja: 30 gru 2012, o 19:24 Płeć: Mężczyzna Lokalizacja: Całkonacja Podziękował: 227 razy Pomógł: 14 razy Igła magnetyczna i przewodnik z prądem. Post autor: GluEEE » 25 wrz 2013, o 17:41 To jak jest z tymi igłami? Tak jak mówił Kartezjusz? Kamaz Użytkownik Posty: 127 Rejestracja: 13 kwie 2013, o 13:44 Płeć: Kobieta Pomógł: 21 razy Igła magnetyczna i przewodnik z prądem. Post autor: Kamaz » 25 wrz 2013, o 22:21 Igła ustawia się wzdłuż linii pola (o ile ma taką możliwość. Nie do końca zrozumiałam, jak dokładnie wygląda sytuacja z zadania). Należy wziąć pod uwagę pole wypadkowe, tzn. pole wytwarzane przez przewód dodane do pola ziemskiego. Kartezjusz Użytkownik Posty: 7318 Rejestracja: 14 lut 2008, o 08:31 Płeć: Mężczyzna Lokalizacja: Z Bielskia-Białej Podziękował: 5 razy Pomógł: 955 razy Igła magnetyczna i przewodnik z prądem. Post autor: Kartezjusz » 26 wrz 2013, o 08:06 Cyli albo zakładamy, że przewód jest tak silnie naladowany, że niweluje ziemskie pole magnetyczne, albo decyduje jeszcze orientacja względem stron świata.
Wśród nich znajdziemy pokładplastikowy lub szklany okrąg, w którym mieści się igła magnetyczna. On otchłań To tarcza otaczająca pokrywę i na której pokazane jest 360 stopni koła. Strzałka kierunkowa to ta, która wskazuje na zewnątrz kompasu. Igła magnetyczna obraca się wewnątrz pokrywy.
Pole magnetyczne — stan przestrzeni, w której siły działają na poruszające się ładunki elektryczne, a także na ciała mające moment magnetyczny niezależnie od ich ruchu. Pole magnetyczne, obok pola elektrycznego, jest przejawem pola elektromagnetycznego. W zależności od układu odniesienia w jakim znajduje się obserwator, to samo zjawisko może być opisywane jako objaw pola elektrycznego, magnetycznego lub obu. Przykład działąnia pola magnetycznegoWłasności pola magnetycznegoPole magnetyczne jest polem wektorowym. Wielkościami fizycznymi używanymi do opisu pola magnetycznego są: indukcja magnetyczna B oraz natężenie pola magnetycznego H. Między tymi wielkościami zachodzi związek gdzie μ – przenikalność magnetyczna ośrodka. Obrazowo pole magnetyczne przedstawia się jako linie pola magnetycznego. Kierunek pola określa ustawienie igły magnetycznej lub obwodu, w którym płynie prąd elektryczny. Pole magnetyczne kołowe jest to pole, którego linie układają się we współśrodkowe okręgi. Pole takie jest wytwarzane przez nieskończenie długi prostoliniowy przewodnik. Indukcja magnetyczna takiego pola maleje odwrotnie proporcjonalnie do odległości od przewodnika. Pole magnetyczne definiuje się przez siłę, jaka działa na poruszający się ładunek w tym polu.
Przenikalność magnetyczna ciał paramagnetycznych jest większa niż przenikalność próżni µ > µ0. Wyrażona stosunkiem B do H przenikalność jest przenikalnością magnetyczną . bezwzględną, mierzoną w henrach na metr (H/m). W praktyce posługujemy się często . pojęciem przenikalności magnetycznej względnej µr . 0. µ µ
Magnetyzm Spis treściPole magnetyczne Magnetyki Ruch ładunku w polu magnetycznym Siła elektrodynamiczna Wzajemne oddziaływanie przewodników z prądem Moment magnetyczny Cyklotron (akcelerator cykliczny)Już w starożytności znana była właściwość jednego z gatunków rudy żelaznej, zwanej magnetytem, polegająca na przyciąganiu kawałków stali. Zjawisko to nazwano magnetyzmem. Natomiast opisane ciało - magnesem trwałym. Pole magnetyczne Na przykładzie magnesu możemy rozpatrzyć pole magnetyczne: Polem magnetycznym nazywamy przestrzeń otaczającą magnes trwały lub przewodnik przewodzący prąd, w której występują oddziaływania dwa bieguny magnesu: północny i południowy. Nie da się rozdzielić biegunów magnetycznych. Charakterystycznymi wielkościami dla pola magnetycznego są: - przenikalność magnetyczna () Linie pola magnetycznego są zawsze liniami zamkniętymi. Bieguny jednoimienne odpychają się; różnoimienne - przyciągają się. W 1820 roku Oersted odkrył oddziaływanie magnetyczne przewodnika, przez który przepływa prąd. Ustawił on przewodnik koło igły magnetycznej. Po włączeniu prądu w przewodniku igła odchyliła się. Świadczy to o tym, że przewodnik z prądem jest źródłem pola magnetycznego. Natężenie pola wytwarzanego przez prostoliniowy przewodnik: Natężenie pola wytwarzanego wewnątrz zwojnicy: I - natężenie prądu d - długość zwojnicy n - liczba zwojów Magnetyki Magnetyki są to ciała makroskopowe, które można magnesować, to jest nadawać im własności zależności od specyfiki dzielą się na trzy podstawowe grupy: diamagnetyki (o względnej przenikalności magnetycznej mniejszej od 1) paramagnetyki (o względnej przenikalności magnetycznej nieco większej od 1) ferromagnetyki (o bardzo dużej dodatniej liczbie względnej przenikalności magnetycznej) W celu scharakteryzowania stanu namagnesowania substancji używamy wielkości zwanej podatnością magnetyczną. Opisuje ona zdolność danej substancji do zmian namagnesowania pod wpływem zewnętrznego pola magnetycznego. k - podatność magnetyczna I - namagnesowanie H - natężenie pola magnetycznego w próbce Podatność magnetyczna dla diamagnetyków jest mała i ujemna, dla paramagnetyków jest mała i dodatnia, dla ferromagnetyków jest dodatnia i duża (rzędu setek lub tysięcy). Diamagnetyzm to zjawiska polegające na powstaniu wewnątrz ciała pola magnetycznego indukowanego przez zewnętrzne pole i przeciwdziałające mu. W ciele powstaje namagnesowanie I skierowane przeciwnie do wektora natężenia pola magnetycznego H, działającego na to ciało. Diamagnetyki to substancje wykazujące zjawisko diamagnetyzmu. Po umieszczeniu ich w polu magnetycznym magnesują się słabo, nietrwale, przeciwnie do pola magnetycznego. Paramagnetyzm to zjawisko słabego magnesowania się ciała w zewnętrznym polu magnetycznym H w kierunku zgodnym z tym polem (przeciwnie niż w przypadku diamagnetyzmu). Przy spadku zewnętrznego pola magnetycznego do zera w substancji wykazującej własność paramagnetyzmu nie pozostaje resztkowe namagnesowanie (odmiennie niż w przypadku ferromagnetyzmu). Paramagnetyki po umieszczeniu w polu magnetycznym magnesują się słabo, nietrwale, zgodnie z polem magnesującym. Ferromagnetyzm to zespół własności magnetycznych ciał krystalicznych będących skutkiem istnienia oddziaływania porządkującego równolegle elementarne momenty magnetyczne (w temperaturach mniejszych od temperatury Curie). Ferromagnetyk to ciało zbudowane z domen magnetycznych, wykazujące silne właściwości magnetyczne. Domeny magnetyczne to bardzo małe obszary stałego namagnesowania. Magnes trwały to ferromagnetyk po uporządkowaniu domen magnetycznych. Namagnesowanie to proces polegający na uporządkowaniu domen magnetycznych w ferromagnetykach. Temperatura Curie to taka temperatura, powyżej której ferromagnetyk staje się paramagnetykiem. Ruch ładunku w polu magnetycznym W elektrostatyce dowiedzieliśmy się, iż na ładunek w polu elektrostatycznym działa siła niezależnie od tego czy ładunek porusza się, czy nie. Sprawdźmy czy tak samo jest w polu magnetycznym. Na ładunek w polu magnetycznym działa siła Lorentza. V - prędkość ładunku B - indukcja pola - wartość siły Rozważmy cztery przypadki w polu jednorodnym: I przypadek - ładunek spoczywa Spoczywający ładunek nie podlega sile Lorentza (F=0). II przypadek - ładunek porusza się zgodnie z liniami pola Ładunek porusza się ruchem jednostajnym prostoliniowym, zachowując początkową prędkość równoległą do linii pola (F=0). III przypadek - ładunkowi nadaje się prędkość początkową o kierunku prostopadłym do linii pola Na ładunek działa siła Lorentza. Zwrot tej siły prowadzi za rysunek. Wyznacza się go za pomocą reguły Fleminga lub reguły lewej ręki. Taka siła nie powoduje zmiany wartości prędkości, lecz zakrzywia tor ruchu (ładunek zacznie poruszać się po okręgu). Jest więc siłą dośrodkową. REGUŁA LEWEJ RĘKI Jeżeli lewą dłoń ustawimy tak, by cztery palce wskazywały kierunek ruchu ładunku dodatniego (w przypadku ładunku ujemnego cztery palce ustawiamy w drugą stronę), a linie pola (wektor indukcji) kłują dłoń od wewnątrz, to odchylony kciuk wskazuje zwrot siły Lorentza. REGUŁA FLEMINGA - siła Lorentza - wektor indukcji - natężenie płynącego prądu IV przypadek - ładunek wpada do pola magnetycznego pod kątem Ruch tego ładunku można traktować jako złożeniu II-go i III-go przypadku. Ładunek będzie się poruszał po linii śrubowej. Siła elektrodynamiczna Na rysunku: oznacza, iż linie pola (linie indukcji magnetycznej) są prostopadłe, skierowane w głąb oznacza, iż linie pola są prostopadłe, skierowane od rysunku Na przewodnik, w którym płynie prąd elektryczny, umieszczony w polu magnetycznym działa siła, zwana siłą elektrodynamiczną. Wyprowadźmy wzór na nią. Na każdy ładunek znajdujący się w przewodniku działa siła Lorentza, a więc na cały przewodnik działa siła: Za prędkość podstawiamy iloraz drogi przez czas: l - długość przewodnika Wiedząc, że natężenie prądu wyraża się wzorem: uzyskujemy wzór na siłę elektrodynamiczną: Wzajemne oddziaływanie przewodników z prądem Przewodnik, przez który przepływa prąd wytwarza w swym otoczeniu pole magnetyczne. Jeżeli w polu tym zostanie umieszczony drugi przewodnik z prądem, to pole pierwszego będzie nań oddziaływało z siłą elektrodynamiczną. Równocześnie jednak drugi przewodnik wytwarza pole magnetyczne oddziałujące z określoną siłą elektrodynamiczną na pierwszy. Zbadajmy przypadek wzajemnego oddziaływania dwóch jednometrowych i równoległych przewodników, będących w odległości 1 m od siebie, jeżeli płyną w nich prądy o wartości natężenia równej 1A. Jeżeli prądy płyną w kierunkach zgodnych, to przewodniki przyciągają się, jeśli w przeciwnych, to odpychają się. Podstawiamy do wzoru wartości liczbowe: Wzajemne oddziaływanie przewodników wykorzystano do zdefiniowania jednostki 1A. Jeden amper to natężenie takiego prądu, który płynąc w dwóch nieskończenie długich, cienkich przewodnikach prostoliniowych umieszczonych w próżni w odległości jednego metra powoduje, że działają one na siebie siłą 2x10-7N na każdy metr swojej długości. Moment magnetyczny Jedną z wielkości używanych przy opisie sił w polu magnetycznym jest moment magnetyczny. Aby wyprowadzić jego wzór, rozważmy, jakie siły działają na przewodnik w postaci zwoju, umieszczony w jednorodnym polu magnetycznym. Dla uproszczenia zakładamy, że przewodnik ma kształt prostokątnej ramki, przez którą przepływa prąd o natężeniu I, przy czym może się ona obracać wokół własnej osi w ten sposób, że jej ramiona a, obracając się przecinają linie pola i są do nich zawsze prostopadłe. Na każde z ramion o długości a działa wówczas siła elektrodynamiczna, przy czym wartość tej siły w położeniu przedstawionym na rysunku linią ciągłą wynosi: B - indukcja pola magnetycznego Siły F, działające na obydwa ramiona a ramki, tworzą parę sił, której moment obraca ramkę wokół osi. W miarę obrotu ramki wartość momentu zmniejsza się według zależności: - kąt zawarty między płaszczyzną ramki i kierunkiem indukcji B W przypadku, gdy ramka przyjmie położenie przedstawione na rysunku linią przerywaną, moment siły staje się równy zeru. Uwzględniając, że iloczyn ab jest równy powierzchni S ramki, otrzymujemy zależność: gdzie iloczyn nosi nazwę momentu magnetycznego. Jednostką momentu magnetycznego jest Elementy takie jak ramka z prądem, solenoid lub igła magnetyczna, charakteryzujące się określoną wartością momentu magnetycznego, noszą nazwę dipoli magnetycznych. Cyklotron (akcelerator cykliczny) Jest to akcelerator cykliczny, w którym stosunkowo ciężkie cząstki (protony, jądra, jony) przyspieszane są polem elektrostatycznym o napięciu rzędu 100kV i wysokiej częstości, istniejącym pomiędzy dwoma duantami, czyli płaskimi wydrążonymi półwalcami. Cząstki poruszają się po torach spiralnych, dzięki istnieniu stałego, silnego pola magnetycznego prostopadłego do płaszczyzny przyspieszenia. Wiedząc, iż pole elektryczne przyspiesza cząstkę, a pole magnetyczne zakrzywia tor ruchu, możemy wyprowadzić wzór na częstotliwość: Podstawiamy wzór na prędkość liniową w ruchu po okręgu: Zasada działania oparta jest na obserwacji, że przy pominięciu efektów relatywistycznych (tj. wzrostu masy przyspieszanych cząstek) częstotliwość obiegu cząstek naładowanych po torze kołowym Wk (częstość cyklotronowa) nie zależy od ich energii, co pozwala łatwo zsynchronizować częstość obiegu cząstek z częstością zmian pola elektrycznego We, tak że: e - ładunek przyspieszanej cząstki m - masa cząstki H - wartość bezwzględna wektora natężenia pola magnetycznego c - prędkość światła Cyklotron był najwcześniejszym akceleratorem cyklicznym. Pierwszy został skonstruowany przez E. Lawrence'a i M. Livingstone'a w Kalifornii w 1931 roku. Ograniczeniem energii osiąganych za pomocą cyklotronu są efekty relatywistyczne wpływające na opóźnianie się cząstek o dużych energiach względem zmian pola, co doprowadza do utraty efektywności przyspieszania. Częściowo można temu zaradzić zwiększając pole magnetyczne wraz z promieniem, co prowadzi do konstrukcji nazywanej cyklotronem izochronicznym. W Polsce pierwszy cyklotron uruchomiony został w latach powojennych na Uniwersytecie Jagiellońskim, następnie został przeniesiony do Instytutu Fizyki Jądrowej (IFJ, również w Krakowie), gdzie był modernizowany i pracował do początku lat 90., osiągając energię protonów równą 3MeV. Od lat 60. w IFJ pracuje większy cyklotron, pozwalający osiągać dwukrotnie wyższe energie protonów i przyspieszać cząstki alfa do energii 29MeV. PODZIAŁ AKCELERATORÓW Akceleratory dzielimy na: akceleratory liniowe (cząsteczki przyspieszone poruszają się po liniach prostych) akcelerator Cockcrafta-Wultona akcelerator van de Graafa akceleratory wiązek przeciwbieżnych (collider) akceleratory cykliczne (poruszają się po okręgu) betatron cyklotron mikrotron synchroton .: ©2009-2012 Zadanie 10.8 Nieważki prosty pręt AB o długości 2l obraca się z prędkością kątową o wokół stałej pionowej osi z prostopadłej do pręta i przechodzącej przez jego środek. Na końcu A pręta znajduje się punkt o masie m1 zaś na końcu B o masie m2. * oś, na której obraca się igła magnetyczna busoli * podobne do wkrętów * stolica Turcji * zagrywki w tenisie * ze stolicą w Sztokholmie grazynka1954. . 386 53 443 266 177 399 102 485

oś na której obraca się igła magnetyczna